
Brad Chamberlain, Cray Inc.

Salishan , April 28th, 2011

* It goes without saying that this somewhat pejorative term doesn’t apply to any of the fine people in this

room, all of whom, in my experience, consistently apply the appropriate amount of control to ensure a high

degree of quality is reached without succumbing to micromanagement.** But if you think hard, perhaps

you can come up with someone in HPC to whom the label applies? Yeah, like him. Totally. Good call.

** I mean, none of us program exclusively in assembly language any more, right??

• Static finite element analysis

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

1 EF – ~2018: Cray ____; ~10,000,000 Processors

2

• Static finite element analysis

• Fortran77 + Cray autotasking + vectorization

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

• Fortran + MPI (?)

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

• C++/Fortran + MPI + vectorization

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

• TBD: C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/??? + ???

1 EF – ~2018: Cray ____; ~10,000,000 Processors

3

HPC has traditionally given users…
…low-level programming models

…ones that are closely related to the underlying hardware

benefits: lots of control; decent generality; easy to implement

downsides: lots of user-managed detail; brittle to changes

4

Thesis: Lower-level notations constrain implementation options
more, for better or worse; for the purposes of exploiting
asynchrony and utilizing exascale, mostly “worse.”

int n = computeProbSize(),

myN = computeMyProbSize(n);

double A[myN], B[myN];

double sumOfSquares, mySumOfSquares;

for (i=0; i<myN; i++)

mySumOfSquares += A[i]*A[i] + B[i]*B[i];

MPI_Reduce(&mySumOfSquares, &sumOfSquares,

MPI_SUM, MPI_DOUBLE, 0, MPI_COMM_WORLD);

5

Global and Local
Declarations

Local Accumulation

Global Combining

int n = computeProbSize(),

myN = computeMyProbSize(n);

double A[myN], B[myN];

double sumOfSquares, mySumOfSquares;

for (i=0; i<myN; i++)

mySumOfSquares += A[i]*A[i] + B[i]*B[i];

MPI_Reduce(&mySumOfSquares, &sumOfSquares,

MPI_SUM, MPI_DOUBLE, 0, MPI_COMM_WORLD);

6

Specified
• Unit of Parallelism: Cooperating Executable (via use of MPI)
• Other Decisions: Data Decomposition, Local Computation Style, and

Synchronous Communication (via program text)

int n = computeProbSize(),

myN = computeMyProbSize(n);

double A[myN], B[myN];

double sumOfSquares, mySumOfSquares;

for (i=0; i<myN; i++)

mySumOfSquares += A[i]*A[i] + B[i]*B[i];

MPI_Reduce(&mySumOfSquares, &sumOfSquares,

MPI_SUM, MPI_DOUBLE, 0, MPI_COMM_WORLD);

7

Unspecified
• Communication Details: All-to-one? Combining Tree? What arity? Who

does each node send to/recv from?
(and with good software engineering, we could arguably do more…)

Traditional PGAS Languages: UPC, CAF, Titanium

 Communication expressed as variable accesses

 says more about what should be moved than how
(or, arguably, when)
 synchronization is decoupled from data transfer

 admits more asynchronous implementations

 Yet control and data models are still fairly restricted

 SPMD execution

 limited support for distributed arrays

8

 A new parallel language being developed by Cray Inc.
under DARPA HPCS

 a PGAS language, but non-traditional:
 rich set of arrays: multidimensional, sparse, associative,

unstructured

 explicit concepts for describing locality/affinity
 e.g., locale type represents architectural locality

 more general/dynamic/multithreaded parallelism

9

A

B

C
A

A

A

A

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

10

Global Declarations

Global Reduction

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

11

Specified
• Intention: “We want to compute a sum reduction”

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

12

Unspecified
• Unit of Parallelism: serial? shared-memory parallel? distributed

memory parallel? both? accelerators? Cray XMT?
• Data Decomposition: local? blocked? block-cyclic? recursive bisection?

what memory types?
• Local Computation Style: statically partitioned? dynamically? details?
• Communication Details: All-to-one? Combining Tree? What arity? Who

does each node send to/recv from?
• implemented using message passing? puts/gets? active messages?

No reason to believe performance must suffer

“High-level doesn’t necessarily mean slow if your
abstractions are designed to map efficiently.”

-Pat Hanrahan (my wording)

const sumOfSquares = + reduce (A**2 + B**2);

13

Another example: sparse arrays
• CSR using 1D arrays ⇒ lots of indirect indexing
• OOP ⇒ lots of field/method indirection
• put sparse arrays in language ⇒ users rejoice; compiler

has rich new semantics to reason about & optimize

“Just because HPF failed doesn’t mean all high-
level languages must.” -Chamberlain corollary

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

How do we implement this global-view operation in practice?

14

ZPL: Block-distributed arrays, serial per node, … (inflexible)

HPF: Not particularly well-defined (“trust the compiler”)

Chapel: Very well-defined and flexible… stay tuned…

config const n = computeProblemSize();

const D = [1..n, 1..n];

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

15

Computation is Rank-Independent

(and with a bit more work on the user’s
part, the declarations could be too)

config const n = computeProblemSize();

const D = [1..n, 1..n];

var A, B: [D] real;

const sumOfSquares = + reduce forall ij in D do

(A[ij]**2 + B[ij]**2);

// or: forall (a,b) in (A,B) do

// (a**2 + b**2);

16

Computation also has rank-independent
loop-based forms

config const n = computeProblemSize();

const D = [1..n, 1..n];

var A, B: [D] real;

var sumOfSquares$: sync real;

begin sumOfSquares$ = + reduce forall (a,b) in (A,B)

do

(a**2 + b**2);

doSomeOtherStuff(…);

…sqrt(sumOfSquares$)…

17

Fire off asynchronous task, storing result
in sync (full/empty) variable

Read of sync variable blocks until
result has been written.

A

B

C

“Brad, this all sounds great for urbane programmers
like you and me, but I’m really concerned about my

poor control freak colleagues. I’m afraid that they’re
just not going to like giving up control like this.”

Chapel’s response: Multiresolution Language Design

18

19

MPI

OpenMP

Pthreads

Target Machine

Low-Level
Machine-Oriented

Concepts

“Why is everything so tedious?”
“Why don’t I have more control?”

“Why don’t my programs port trivially?”

ZPL

HPF

Target Machine

High-Level
Abstractions

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for performance, control

 build the higher-level concepts in terms of the lower

 separate concerns appropriately for clean design
 yet permit the user to intermix the layers arbitrarily

20

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

Locality feature:
on x do foo(); // run foo() on the locale storing x

Task parallel feature:
coforall i in 0..#numTasks { // create a task per iteration

foo(i);

} // join tasks before going on

Base language features:
iter fib(n) { // define an iterator

var current = 0, next = 1; // use type inference

for 1..n {

yield current; // generate next result

current += next;

next <=> current; // swap operator

}

}

for f in fib(10) do writeln(f); // invoke iterator serially

21

A language can support both global- and local-view
programming

proc main() {

coforall loc in Locales do

on loc do

MySPMDProgram(loc.id, Locales.numElements);

}

proc MySPMDProgram(me, numCopies) {

...

}

22

A language can support both global- and local-view
programming (and even message passing)

proc main() {

coforall loc in Locales do

on loc do

MySPMDProgram(loc.id, Locales.numElements);

}

proc MySPMDProgram(me, numCopies) {

MPI_Reduce(mySumOfSquares, sumOfSquares,

MPI_SUM, MPI_DOUBLE, 0,

MPI_COMM_WORLD);

}

23

 Interoperability: support calls out to more traditional
languages

extern proc iMustWriteThisInC(x, y);

 also helps with adoption, preserving legacy code

 Inlining Languages: embed traditional languages
within the higher-level language

inline {

…(insert C code here)…

}

 like inlining assembly within C

24

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

25

Chapel: Defined in terms of zippered iteration semantics

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce forall (a,b) in (A,B) do

(a**2 + b**2);

26

Chapel: Defined in terms of zippered iteration semantics

 Chained whole-array operations are implemented
element-wise rather than operator-wise.

⇒ No temporary arrays required by semantics

A**2 + B**2 ⇒ T1 = A**2;

T2 = B**2;

T3 = T1 + T2;

⇒ forall (a,b) in (A,B) do (a**2 + b**2);

 Provides an execution model that one can reason about
and control using domain maps.

27

Domain Maps: “recipes for parallel/distributed arrays

and domains (index sets)”

Domain maps define:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in memory

 Standard operations on domains and arrays
 e.g, random access, iteration, slicing, reindexing, rank change

Domain maps are built using Chapel concepts
 classes, iterators, type inference, generic types

 task parallelism

 locales and on-clauses

 other domains and arrays

28

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Domain Maps fall into two major categories:

layouts: target a single locale (memory)
 e.g., a desktop machine or multicore node

 examples: row- and column-major order, tilings,
compressed sparse row, space-filling curves

distributions: target distinct locales (memories)
 e.g., a distributed memory cluster or supercomputer

 examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, …

29

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce forall (a,b) in (A,B) do

(a**2 + b**2);

30

No domain map ⇒ use default layout

Since A is first array in zippering, it is the leader.

 All zippered forall loops are defined in terms of
leader/follower iterators:
 leader iterators: specify parallelism, assign iterations to tasks

 follower iterators: serially execute work generated by leader

 conceptually, the Chapel compiler translates:
forall (a,b) in (A,B) do

(a**2 + b**2);

into:

for work in A.lead() do

for (a,b) in (A.follow(work), B.follow(work)) do

yield a**2 + b**2;

…where A’s/B’s domain maps define lead() & follow().

31

Leader iterators are defined using task/locality features:
iter BlockArr.lead() {

coforall loc in Locales do

on loc do

coforall tid in here.numCores do

yield computeMyBlock(loc.id, tid);

}

Follower iterators simply use serial features:
iter BlockArr.follow(work) {

for i in work do

yield accessElement(i);

}

32

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

The default layout:
• targets local memory and processsors only
• its leader iterator…

…by default, uses #tasks = #cores
…decomposes indices/elements using static blocking

33

No domain map ⇒ use default layout

Q: “So what do I… (oops, I mean) … what does my
control freak colleague do if s/he doesn’t like the
leader iterator’s approach?”

A: Several possibilities…

34

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce forall (b,a) in (B,A) do

(a**2 + b**2);

35

Make something else the leader.

(moot in this case – B also uses default domain map)

config const n = computeProblemSize();

const D = [1..n];

var A, B: [D] real;

const sumOfSquares = + reduce forall (a,b)

in (myLdr(A,blk=64), B)

do (a**2 + b**2);

36

Invoke some other leader iterator explicitly
(perhaps one that you wrote yourself).

config const n = computeProblemSize();

const D = [1..n] dmapped BlockCyclic(start=1,

blocksize=64);

var A, B: [D] real;

const sumOfSquares = + reduce forall (a,b) in (A,B) do

(a**2 + b**2);

37

Change the array’s default leader by changing its
domain map (perhaps to one that you wrote yourself).

 We can still control an array’s decomposition, layout

 We can still control parallelism and work mapping
 even explicitly if we want to (SPMD-in-Chapel)

38

Maybe we can continue to be control freaks after all!

(and really, did you think HPCers could be anything else?)

 Yet, by using domain maps & iterators, we…
 insulate our algorithm from its implementation details

 make the code more portable, readable, maintainable, etc.

 and really, isn’t that what productivity is all about?

 HotPAR’10 paper: User-Defined Distributions and
Layouts in Chapel: Philosophy and Framework

 Upcoming CUG’11 paper/talk: Authoring User-
Defined Domain Maps in Chapel

 For Chapel users…
 Technical notes detailing domain map interface for programmers:

$CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

$CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

39

Hardware wishlist for exploiting asynchrony:

 atomic operations (local and remote)

 single-sided puts/gets

 pervasive full/empty bits

 network support for active messages

Tools wishlist for asynchrony at exascale:

 relative/comparative debugging

 more pervasive visualization capabilities
 of user data

 of resource utilization: memory and processors

 of algorithm execution

40

Data-oriented programming models help science to be
insulated from implementation

 yet, without necessarily abandoning control

 supports 90/10 rule well

Building data parallelism using task parallelism
supports asynchronous styles of parallelism

 Results in execution models that are more general,
dynamic, and loosely-coupled than today’s

 Serves as a good foundation for exascale

 Multiresolution philosophy is key here

41

Chapel ≠ HPF, due to its:

 well-defined execution model for data parallelism

 user-defined distributions & layouts

 ability to escape implicit data parallelism model

Chapel is not revisiting the HPF compilation problem

 rather, the “user-level specification of distributed
parallel arrays” problem

42

 Chapel Home Page (papers, presentations, tutorials):

http://chapel.cray.com

 Chapel Project Page (releases, source, mailing lists):

http://sourceforge.net/projects/chapel/

 General Questions/Info:

chapel_info@cray.com (or chapel-users mailing list)

 Upcoming workshop on this topic:

Future Approaches to Data-Centric Programming for
Exascale (@IPDPS, May 20th 2011)

43

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com

http://sourceforge.net/projects/chapel/http://chapel.cray.com chapel_info@cray.com

